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ABSTRACT 
Progress in algorithm development and transfer of results to 
practical applications such as military robotics requires  standard 
qualitative and quantitative measurements for performance 
evaluation and validation. Although the evaluation and 
validation of algorithms have been discussed for well over a 
decade, the research community still faces a lack of well-defined 
and standardized methodology.  In this research, we describe 
three methods for creating ground truth databases and 
benchmarks using multiple sensors, for use in mobile robotics. 
The databases and benchmarks provide researchers with high 
quality data from suites of sensors operating in complex 
environments representing real-world problems. At NIST, we 
have equipped a High Mobility Multi-purpose Wheeled Vehicle 
(HMMWV) with a suite of sensors including a Riegl ladar, 
GDRS ladar, stereo CCD, several color cameras, Global 
Positioning System (GPS), Inertial Navigation System (INS), 
pan/tilt encoders, and odometry†.  All sensors are calibrated and 
registered with each other in space and time. This allows a 
database of features and terrain elevation to be built. Ground 
truth information is collected through aerial surveys, from maps, 
by human annotation, and by previous traverses of the terrain by 
the vehicle. Ground truth may include terrain elevation 
information, feature information (roads, road signs, trees, ponds, 
fences, etc.) and constraint information (e.g., one-way streets). 
We have implemented our a priori database using One Semi-
Automated Forces (OneSAF), a military simulation 
environment. Using the Inertial Navigation System and Global 
Positioning System (GPS) on the HMMWV to provide indexing 
into the database, we extract all the elevation and feature 
information for a region surrounding the vehicle as it moves 
about the NIST campus. Ground truth for each sensor can be 
obtained by projecting this information into the sensors’ 
coordinate systems. The main goal of this research is to provide 
ground truth databases for researchers and engineers to evaluate 

                                                 
† Certain commercial equipment, instruments, or materials are 
identified in this paper in order to adequately specify the 
experimental procedure. Such identification does not imply 
recommendation or endorsement by NIST, nor does it imply that 
the materials or equipment identified are necessarily best for the 
purpose. 

algorithms for effectiveness, efficiency, reliability, and 
robustness, thus advancing the development of algorithms. 
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1 INTRODUCTION 
 
Historically, performance evaluation has not been 
commonly practiced in the perception community. 
Periodically, efforts are made to persuade researchers to 
provide performance evaluations that can be 
substantiated, but only a few take up this challenge.  As a 
result, performance evaluation is ad hoc in general, and 
quite frequently completely absent from research papers. 
In Europe, a number of formal programs have been 
developed that address performance evaluation of vision 
algorithms. Of these, ECVnet, an association of European 
vision researchers, had a subcommittee on Benchmarking 
and Performance Measures[1], although it now appears to 
be defunct. The German Association for Pattern 
Recognition (DAGM) established a Working Group on 
"Quality Evaluation of Pattern Recognition Algorithms", 
but it, too appears inactive[2]. The International 
Association for Pattern Recognition has a Technical 
Committee on Benchmarking & Software, which 
organizes performance competitions comparing 
algorithms for particular applications, such as fingerprint 
identification and document analysis[3]. There have also 
been a number of workshops on performance 
characterization and benchmarking of vision systems. 

A number of publications address the issue of how to 
evaluate the performance of vision algorithms and 
provide examples of careful evaluations of particular 
algorithms or classes of algorithms. Approaches to 
performance evaluation can be classified into the 
following general categories, recognizing that more than 
one approach may be used in an evaluation. 

 
Comparative  Here an algorithm may be compared with 
others that attempt to address the same image-processing 
task, or its performance may be compared to “ground 
truth,” or perhaps to human performance[4-9]. 



Analytic The theory behind the algorithm is examined to 
try to determine the limits to its operation. The 
computational complexity may be derived, or theoretical 
optimality may be determined under certain constraints. 
Frequently, the approach makes use of simplified input 
data to make the analysis feasible[10-13]. 
Performance  The way the algorithm actually performs on 
test data is measured and execution times with different 
parameters may be reported[14-16]. 
Appropriateness to Task  The algorithm is shown in the 
context of a particular application, and the constraints of 
the task are used to justify the selection of the particular 
algorithm. The performance of the task as a whole is 
taken as the evaluation of the algorithm[17;18]. 
 

Other, more informal measures include generality 
and acceptance. Perhaps the only real performance 
evaluation measure in common use is longevity. 
Algorithms that are accepted widely and implemented by 
many people for different applications can be considered 
good performers. 

A large number of papers report excellent 
performance of their algorithms, based on small data sets. 
The success of the FERET program[9] has inspired us to 
take up the challenge of producing a large database of 
ground truth for the domain of mobile robotics. In this 
domain, sensors are mounted on the moving vehicle, and 
the algorithms are constrained to run in real time (i.e., fast 
enough to provide data to properly control the vehicle). 
The ground truth that we provide is much more extensive 
than is typically available, and where human 
interpretations provide the ground truth, they cover a 
large number of image sequences because the annotation 
of the images is performed with computer assistance.  

We have developed reliable methods of producing 

three different kinds of large databases of sensor data with 
ground truth. One method involves collecting ground 
truth data using a highly accurate ladar sensor mounted on 
our instrumented HMMWV. The ladar can characterize 
large areas of terrain and is registered with cameras that 
provide color information for each ladar point. The 
position and time at which each sample is collected is 
recorded with an Inertial Navigation System (INS) and 
Global Positioning System (GPS) accurate to a few 
centimeters. Another set of data was obtained through a 
high-resolution aerial survey of the grounds of the 
National Institute of Standards and Technology (NIST) 
and surrounding area. The survey includes annotations 
providing labels for all the features. Lastly, we have 
developed an interactive method of hand-labeling features 
in image sequences to efficiently generate a large 
database of ground truth data. 

The data sets are used to evaluate performance of 
algorithms objectively by comparing the output of the 
algorithms to the expected result derived from the ground 
truth. Given a large number of ground truth data sets from 
different environments, statistical evaluations are possible 
as well as the robust assessment of performance of 
algorithms. 

The main goal of this work is to make our test data 
and ground truth available for general use, with the hope 
that it will lead to rapid and significant development of 
perception algorithms for autonomous mobility. In order 
to validate the approach we use the data sets to evaluate 
our own algorithm development. 
The NIST HMMWV is a military vehicle modified for the 
purposes of research and development in mobile robotics. 
Mounted on the vehicle are racks to hold computers and 
related equipment, a power generator, and numerous 
sensors (Figure 1). The sensor mounts are flexible, so that 

 
Figure 1 A view of the NIST HMMWV showing some of the sensors. 

 



new sensors can easily be added. Sensors include a 
General Dynamics Robotics Systems (GDRS) imaging 
ladar mounted on a tilt platform, a color camera mounted 
on top of the ladar on the tilt platform, and a highly 
accurate position and orientation system[19]. 

Other sensors that are commonly used on the vehicle 
include a pair of color stereo cameras, a Sick line-scan 
ladar, currently mounted on the back of the vehicle, and a 
Riegl high-resolution scanning ladar. 
 
2. SENSOR CALIBRATION AND 

REGISTRATION 
 
Our goal is to provide sets of data that are registered in 
both space and time. Registration allows information 
from multiple sensors to be integrated and enables the 
spatial relationships between successive samples to be 
computed. Preparing for data collection includes 
calibrating the sensors and accurately measuring their 
positions and orientations on the vehicle. Then data are 
collected from calibrated courses containing known 
objects to enable the capabilities of each sensor to be 
quantified.  

The cameras are calibrated using Bouguet’s 
method[20]. The ladars are each calibrated using special-
purpose methods. For example, the GDRS ladar is 
calibrated by mounting it on a highly accurate pan-tilt 
platform. The pointing direction of each laser pixel is 
determined by moving the ladar until the laser beam for 

that pixel is centered on a calibration target. The angle at 
which the laser is pointed for each pixel can then be 
determined from the pan and tilt position of the platform. 

The positions and orientations of the sensors relative 
to the vehicle coordinate system and to each other are 
determined using an external measurement system. We 
use an ArcSecond laser-based site measurement system 
(SMS) to provide these measurements. For the Riegl 
ladar, the approach is to park the vehicle in such a way 
that it faces two orthogonal walls. The Riegl is then used 
to scan these walls and the ground Figure 2, and a 
transformation is obtained from the building to the Riegl 
coordinates. The ArcSecond sensor is then used to 
determine the HMMWV to ArcSecond transform and the 
wall to ArcSecond transform. Finally, the Riegl to 
HMMWV transform can be obtained by matrix 
multiplication: Riegl to HMMWV = Riegl to Building * 
Building to ArcSecond * ArcSecond to HMMWV. Similar 
methods are used to locate the other sensors relative to the 
vehicle. 

 
3. COLLECTING DATA 
 
Data are collected in two primary modes. One is while the 
vehicle is driving normally, while the other is with the 
vehicle stationary. Some of the sensors do not run in real 
time, so can only be used when the vehicle is not moving. 
The trade-off between the two modes is that while data 
acquired in real-time approximate more closely the actual 
driving conditions, they are less accurate and usually of 
lower resolution than data from the slower sensors used 
when the vehicle is stopped. The expectation is that this 
higher resolution data will soon become available in real 
time as new sensors are developed. 
A critical part of data collection for mobile vehicle 
applications is to record the vehicle position and 
orientation (pose) and the time at which each data sample 
is acquired. This enables data collected from multiple 
sensors to be registered, and also allows the data for a 
complete mission to be compiled into a reconstruction of 
all the terrain that was traversed.  The vehicle pose and 
the time are provided by an Applanix navigation unit that 
combines an inertial component with information from 
the Global Positioning System (GPS). This unit typically 
provides real-time data accurate to better than one meter 
and a few hundredths of a degree. With post-processing, 
the accuracy is a few centimeters in distance and angular 
accuracy is a few thousandths of a degree. 

To date, data have been collected for two main 
purposes. The first is to provide a large variety of input 
data for developing and testing sensory processing 
algorithms. More recently, a new application has required 
characterizing terrain and developing measures of 

 
Figure 2 Data from a scan of orthogonal walls 

using the Riegl ladar. 

 



difficulty of traversal for robotic vehicles. This has led to 
a more structured way of collecting data, and is the main 
reason for needing highly accurate pose and time 
information and for using high-resolution sensors such as 
the Riegl ladar. 

Collecting data for algorithm development involves 
driving the vehicle in the way it would normally operate, 
over terrain representative of the environment in which 
the vehicle normally operates. The data are acquired as 
follows. First, the sensors are calibrated and registered, 
and the navigation system is initialized. Next, a human 
driver drives the vehicle over the terrain of interest, and 
the sensors collect all the real-time sensory data 
simultaneously. The sensors are started simultaneously, 
and navigation and timing data are collected with the 
sensory data. Typically, the collection is divided into 
segments about three minutes in length, mainly for 
convenience in later processing and storage. Longer 
periods can also be collected, limited only by the 
available storage space, which is large (several hundred 
Gigabytes). 

When data are collected for terrain characterization, 
the process is more methodical. Data have usually been 
collected on courses laid out for evaluating the 
capabilities of an experimental unmanned vehicle (XUV) 
developed under the Army’s Demo III program. These 
courses are defined by a set of GPS waypoints, through 
which the XUV is supposed to pass as it carries out its 
mission. Data are collected both for the entire course and 
for locations that required an emergency stop for the 
XUV or where the vehicle displayed “interesting” 
behavior, such as backing up, suddenly changing 

direction, or performing an unanticipated intelligent 
maneuver. 

Three sets of data are collected for each course. First, 
the vehicle is driven over the course collecting data with 
the real-time sensors. Next, the vehicle is moved to the 
first waypoint on the course. Starting from this point, and 
moving a fixed distance between samples, scans are taken 
of the terrain using the Riegl ladar and a digital camera on 
a pan-tilt unit that captures approximately the same field 
of view as the Riegl. The scans are not taken at the 
highest resolution the ladar sensor can measure, but still 
provide much more accurate information than the real-
time sensors. The navigation data are also stored to 
provide the position and heading of the data collection 
vehicle at the time the sample is collected. The entire 
course is sampled in this way. Finally, a set of high-
resolution scans is taken of the difficult or interesting 
locations on the course. 
 
4. ANNOTATING DATA FOR GROUND TRUTH 

 
We first discuss our method for creating ground truth 
databases for sequences of color image data. It involves a 
human user, who annotates the data to supply the ground 
truth.  Manually annotating sensor data with ground truth 
is costly and time consuming. Instead, we have developed 
a semi-automatic ground truth application that reduces 
cost and time by requiring only occasional annotation. 
The user annotates the first image of a sequence by 
outlining and naming regions of interest (e.g., highway 
signs, vehicles). The computer then tracks the annotated 
regions through successive images, and the user observes 

 
Figure 3 The first frame of a sequence. The user has 

drawn the features to be tracked. 

 

 

 
Figure 4 The computer tracks the features through a 

sequence of images 

 

 



how well each region is recognized and outlined by the 
computer. When the annotations start to diverge from the 
desired regions, the user intervenes and re-identifies the 
regions, retaining the same names. When new regions 
appear that the user wants to track, the same process of 
stopping the computer, annotating the regions, and 
restarting the tracking is followed. The annotation 
application can be used to outline regions with curved or 
polygonal lines, and several tracking algorithms can be 
used, depending on the objects in the images. The output 
of this process consists of the names, shapes and position 
coordinates of the targets in each image 

Figure 3 shows the starting frame of a sequence of 
color images. It shows road edges that were selected by a 
user constructing the ground truth. Figure 4 shows the 
results of automatic tracking. The tracking to this point is 
acceptable, and no user interaction is required.  In Figure 
5, the tracker is starting to lose the edge of the road. At 
this point, the user intervenes, selects the road edge again, 
and the tracking continues (Figure 6) 
 
5. EVALUATING SENSORS 
 
Another approach provides data for evaluating range 
sensors. It makes use of a high-resolution ladar (Riegl 
LMS Z210) to construct a map of a region. The map can 
then be used for evaluating range sensors that have 
significantly lower resolution than the Riegl. We use a 5 
cm x 5 cm spatial resolution grid to construct the ground 
truth map, but maps can be constructed at different 
resolutions (finer or coarser).  This method has been used 
to gather ground truth for off-road terrain such as that 
shown in Figure 7.   

Evaluating other range sensors involves mapping 
their data into the high-resolution grid. The residual of the 
Riegl data and the other sensor data provides a measure of 
the performance of the sensor (relative to the Riegl). It is 
important to note that in order to map data from the 
sensor under test onto the Riegl data, the positions and 
orientations of the sensors must be known accurately. The 
current map resolution of 5 cm x 5 cm corresponds to a 
spatial tolerance of 5 cm. This method of constructing a 
map of a region can also measure how much information 
each successive ladar image adds about the world. The 
ground truth maps can also be used to evaluate similar 
maps constructed with stereo algorithms[6] 

 
Figure 5 In this frame, the automatic tracker has 

drifted enough to require human intervention. 

 
 
 

 
Figure 6 The user re-initializes the features and 

automatic tracking continues 

 
Figure 7  Example scene from an off-road data set 



Figure 8 shows the result of scanning a region  with 
the Riegl ladar. Figure 9 shows the sub-region scanned 
with a different ladar (GDRS). In Figure 10 the two scans 
are overlaid. The white region shows the mismatch due to 
the lower resolution and coarser range quantization of the 
GDRS ladar (with a small component due to registration 

error). 
The third approach to performance evaluation 

involves constructing a ground truth database of color and 
range images based on a high-resolution aerial survey 
combined with data from calibrated ground sensors such 
as cameras and ladars. In our case, we commissioned a 

survey of the NIST campus ( 2m410234 ×  or 578 acres) 
and part of the surrounding urban area. The area includes 
roads, parking lots, traffic signs, buildings, trees, streams, 
fences, etc., as well as off-road terrain. All of these 
features are recorded and entered into a database of 
features and terrain elevation. Ground truth for each 
sensor can then be extracted from the database based on 
position and sensor model.  
 
6. DATA STORAGE AND ACCESS 
 
Information about each set of data is stored in a relational 
database, and the data sets themselves are stored in a large 
capacity storage repository. Each set of data is described 
in terms of the location, time of year, time of day, 
weather, sensors used in the collection, and keywords 
describing the data. A web query interface is used to 
select data from the repository (Figure 11 and Figure 12). 
This interface will shortly be made available outside the 
NIST firewall, and researchers are encouraged to take 
advantage of the data. 

A wide range of off-road data has been collected, 
including desert, woods, grassy areas, bushes, water, tree 

 
Figure 8 Range data from the Riegl ladar. Color is 

used to represent elevation. 

 

 
Figure 9 The sub-region seen by the GDRS ladar, taken 
from the same position. Elevation is again represented by 
color. 

 

 
Figure 10 The result of overlaying the GDRS 

ladar data on the Riegl data. The difference in 
measurement of the scene can clearly be seen. 

 



lines, obstacles (rocks, trees, ditches, etc.) and 
undulations and slopes of various sorts (Figure 7). On-
road data includes dirt and gravel roads as well as paved 
roads, road markings, road signs, and features along the 
sides of the road (Figure 13). Some of the data includes 
pedestrians, other vehicles, and special situations such as 
roadwork, human gestures for guiding the vehicle, and 
images of a calibration target. 

Ground truth data has been acquired for some of the 
data from an aerial survey of the NIST grounds and 
surrounding area at a resolution of about 0.3 m per point. 
The ground truth includes features such as roads, road 
signs and markings, telephone poles, buildings, trees, 
fences, ponds, etc. This data provides both a way of 
evaluating the sensory data and a resource for testing 
recognition algorithms and using a priori information in 
sensory processing. 

Other information available with the data includes 
the relative positions and orientations of the sensors, their 
calibration parameters, the time at which each sample was 
collected, and the position and orientation of the vehicle 
at that time. This makes it easy to register the sensors 

with each other and with the location of the vehicle in the 
world. 
 

7. DISCUSSION AND CONCLUSIONS 
 
Given a dataset captured in the manner described above, 
we can borrow the evaluation procedure from the FERET 
program[9] to quantitatively evaluate the performance of 
sensor-processing algorithms such as segmentation, 
classification, and recognition algorithms. These 
algorithms produce labeled regions in an image. The 
regions can be projected into the a priori data and 

assigned labels from the ground truth. It then becomes a 
simple matter to determine the percentage of false 
positive and false negative labels of each algorithm and 
the correctness of the detected positions and shapes of the 
objects.  

The ground truth data are also an excellent resource 
for verifying the accuracy of a ladar sensor by taking 
samples from locations that contain surfaces or objects of 
known sizes, distances, and orientations. The response of 
the algorithm is then compared with the ground truth 
position, which is extracted from the database of prior 
knowledge based on the known position of the sensor and 
its field of view. Obviously, all measurements are limited 
by the accuracy of the a priori data and the accuracy with 

which the position and orientation of the sensor can be 
established with respect to the a priori data. For the NIST 
grounds, we have a priori data that are accurate to within 
a few centimeters, and are working on algorithms to 
register sensor data with the ground truth to similar 
accuracy[21]. A sample-by-sample measurement can be 
made, giving the range resolution and field of view of the 
sensor. Alternatively, feature-based measurements can be 
made, giving the accuracy with which the sensor can 
capture surfaces of different shapes and slopes. More 
detailed studies, such as trying to determine which part of 
the field of view of a single sample (e.g., laser beam) 
gives rise to the measured response, can also be made, but 

 
Figure 11 Web interface for querying sets of data. 

 

 
Figure 12 Partial results of query. 

 



methods customized to the sensor are more reliable. 
We have developed a reliable methodology for 

establishing a large database of ground truth for 
evaluating sensors and sensor-processing algorithms. The 
database is available to the public with the hope that 
researchers and engineers will use it to verify and 
evaluate sensors and algorithms for effectiveness, 
efficiency, reliability, and robustness. This will enable 
algorithms to be developed using realistically difficult 
sensory data, allow quantitative comparisons of 
algorithms by using the same data, and spur technology 
transfer by providing industry with metrics for comparing 
algorithm performance. It will also help with sensor 
development by highlighting areas of strength and 
weakness of current sensors. 
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